Skip to content

[ASAP] Bioinspired Neuron-like Adsorptive Networks for Heavy Metal Capture and Tunable Electrochemically Mediated Recovery

Abstract Image

Electrochemical techniques have garnered increasing attention as a heavy metal remediation platform for pollutant mitigation and sustainable recycling. Inspired by the biological signal-transfer mode, biomimic neuron-like hierarchical adsorptive networks were constructed by interweaving one-dimensional manganese oxide nanowires into polyaniline-decorated hollow structural metal–organic frameworks (MOFs). The prepared biomimic neuron adsorbent exhibits good adsorption capacity toward cations (Pb2+) and oxyanions (Cr2O72–) at the neutral state; tunable cation/oxyanion desorption can be electrochemically switched at the oxidized and reduced states, respectively, where the biomimic neuron-like hierarchical adsorptive networks facilitated electron transfer and benefited substantial redox reactions. The combination of simulations and calculations demonstrates that the curvature-induced polarization in a hollow MOF structure enhances the desorption efficiencies by improving the redox processes at the electrode–electrolyte interface, which facilitate the promising implementation in terms of water economy and downstream waste sustainability.

No comment yet, add your voice below!

Add a Comment

Your email address will not be published. Required fields are marked *